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Solutlons are obtained for transitional equations of
gas dynamics in horizontal and axisymmetric cases by expand-
ing the desired functions into exponential series by the
radius vector. For an arbitrary coefficient of the series
we get a system of differential equations with variable co-
efficients, in which time 'acts as a parameter. The solution
of this system is obtained in a closed form, containing ar-
bitrary time functions which are determined by 1imit condi-
tions on the shock wave and on the surface of the streamlined
body. The obtained results allow calculation of gas flow 1n‘
the region of the anterior border, or the cross-sectional \
view of the generatrix of the streamllned body in the case \
of parameters that do not change rapidly in time. In works \\
[1 - 3] various specific cases of this report had been stud-
ied. In work [4] analogous series were used for studying

free axisymmetric flows. //ézzbj¥ké;w,,/)
1.

Statement of Problem

We will examine horizontal and axisymmetric gas flow
in a moving system of coordinates, moviig forward with speed
V(t). 1In the horizontal case, we place the origin of coord-
inates at the anterior border of the body, and in the axisym-
metric case -~ at a certain distance R from the axis of sym-
metry, for example on the anterior border of a body with a



channel or at the point of contour cross-section. We examine
the flow in a coordinate system in which the position of a
point is determined by radius vector r and angle §, read
from angle 9y, where § is the angle between the tangent to
the anterior border and the axis of body symmetry.

The equation system of gas dynamics in the given set
of coordinates has the form
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Here p ~- pressure; pP -~ density; u and v -- projec-

tions of speed in the directionof the radius vector and per-
pendicular to it; <4 -~ adiabat indicator; v = 1, 2 corres-
pondingly for horizontal and axisymmetric flows.

In solving system (1.1) the limiting conditions will
be four conditions on the shock wave

Vis = Vs, pPr(Vi—Dn=p, (V= D)n

ps [(Vy — D) nlf + py, = py uv, —D)nP+p " 1.2
1
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and one condition on the body surface
P V,mt=0 ‘ 13

Indices 1 and 2 correspondingly indicate magnitudes
related to the areas of flow before the shock wave and be-
hind it; n, s, and no are unit vectors of the normal and
tangent to the shock wave and the normal to the body surface;
D is the relative speed of shock wave movement.

We seek the solution of system (1.1) in the form of
the following exponential series:
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where r indicates r/R.

2., Formation of Solution

We insert (1.4) into equations (1.1) and equate co-
efficients with the same powers r.

The equation for a zero approximation
o o \

corresponds te quasistationary streamlining of a wedge with
aperture semiangle equal to es’ and has the solution

lv Walf{ﬂmﬂ‘ v.n;—ll(t)kine N (3,2)'

where U(t) is determlned from the limit conditions. Intro-
ducing dimensionless variables

"‘n’“o- vp/ay, P;Jﬂo'Pov Pn/Pco ay = V'rpo/p'. M = Ulay i

we get the following system for n expansion coefficients:
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In system (2.3) time acts as a parameter, since the
derivatives of the desired time functions are contained only
in the right members. Integrating the fourth equation in
(2.3), we get
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where A,(t) is an arbitrary function of time.

We insert (2.4) into the third equation in (2.3) and
eliminate up

. o,
(n’cosOcth-{- si’;e—r-sine) v,,—-2ncose%"'+
@, n n4 1 P) T -
+smeﬁ,l+—b-,—pn+—]u—ct_ge%——ﬁﬁ%‘=c,.(:.e) (2.5)
: ) N\ opn . :
n(n - 1) ctg 0y — n 5=+ nM'cosep,._(Msine —;{in—g)'ﬁ%‘-éﬂ,‘ @t 0)

Substitution of the desired function in (2.5) by
v = w, sin™" @ 2.6 |
!

allows us to obtain, in the final result, a second order
equation for pp
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From here, eliminating w,, we get
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By the method of indeterminate coefficients we can
find two linearly independent solutions of the corresponding
homogeneous equation (2.8), since with substitution by sinR
¢ and cosN § in this equation the result contains sines an
cosines of power < n,
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and with n pot even
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where gq,, g0 and 4, _,, ﬂzn 41 are determined from a linear
algebraic system, and Bp(t) and C,(t) are arbitrary time
functions. The specific solution of a non-homogeneous equa-
tion can be found by the method of indeterminate coefficients
or by the method of constant variation. From (2.6) and the
second equation of (2.7)

sin™te ¢ 90 ae fn-1\ 0P
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where D_. (t) is an arbitrary function; u, can be determin-
ed from %he second equation of (2.3).

3. Limit Conditions

Let us express the shock wave equation and the body
outline equation in a moving coordinate system in the form

0 =30, +Gi(t)r - Bao(t) 2 4o, B = Py + r(t)r + Pat) + ... (“ﬁ

For l1limit conditions in determining five unknown func-
tions A (t), B (t), Ca (t), D, (t) and 6,(t), we have conditions
(1.2) ahd (1.3}. "Let"us subStitute (3.1) in (1.2) and (1.3).
For a zero approximation at 6= §,
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The zero approximation corresponds to streamlining of a wedge,
and the flow parameters for behind the shock wave at each mom-
ent of time are determined analogous to the stationary case.
For an n approximation

dpy + (n P 1) vobp = gy P (n P 1) 0,0, I fn
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Ung = (0 4 1) ugaPy + %4 nps 6 =0 -

[Legend]: a) at.
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where the first index indicates the approximation number,

and the second gives the area of flow, functions fn(t), A0,
Hfn(t), vo(t) and %,(t) depend on the preceding approxima-
tions. Substituting in (3.3) the solutions upg9, vp2, P n2
and Pp9, we get five linear algebraic equations for determin-
ing the five functions Ap(t), B,(t), Ch(t), Dh(t) and-0,(t).

As a simple example we calculated the streamlining of
a conical body with a channel by a uniformly accelerated and
a uniformly decelerated supersonic _flow. At acceleration
not more than + éOOO meters/secondz, due to the smallness of
parameter (R/gqo2”) (dU/dt) it is sufficient to view the flow
at each moment of time as if the instantaneous flight speed
were constant, An analogous fact holds in the case of po-
tential streamlining of thin bodies [5, 6].
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